摘要:随着城市化进程的不断推进和低碳出行理念的深入人心,共享单车作为绿色交通工具得到了广泛普及。然而,共享单车的需求在时间和空间上均呈现出显著的波动性,如何对其需求进行精准预测,进而优化调度和运营管理,已成为共享出行领域亟待解决的关键问题。传统机器学习方法在处理具有复杂时序依赖关系的预测任务时存在明显局限性,而深度学习中的长短时记忆网络(Long Short-Term Memory,LSTM)凭借其对长期依赖关系的出色捕捉能力,为时间序列预测提供了新的解决思路。
论文目录

图1 论文目录
论文概述

图2 论文概述
配套项目
项目代码:基于LSTM的共享单车需求预测研究 需要另外购买。
作者信息
作者:Bob (张家梁)
论文编号:Doc-1
原创声明:本项目为原创作品

开源协议
本项目采用AGPL-3.0开源协议,允许个人和组织自由使用、修改和分发代码,但基于本项目的衍生作品必须同样开源,且用于提供网络服务时需向用户提供完整源代码。本项目仅供学习研究使用,作者不对使用本项目产生的任何后果承担责任,使用者应遵守当地法律法规,合理合法使用本项目。如本项目对您的研究或工作有所帮助,欢迎引用并注明出处。
版权声明:本站除特别标注外的所有源码与资料均为原创,受《中华人民共和国著作权法》等相关法律保护。未经本站事先书面许可,任何个人或机构不得以复制、转载、爬取、汇编、改写、引用等方式使用本站内容,不得将本站内容发布或用于任何形式的商业活动。对未经授权使用本站内容的行为,本站保留追究法律责任的权利,包括但不限于要求删除、赔偿、诉讼等。如认为本站内容侵犯其合法权益,请提供权属证明并联系我们,我们将在核实后依法及时处理。


评论(0)