摘要:泳池溺水事故具有突发性强、识别窗口短的特点,传统人工监控方式难以实现全时段、全覆盖的有效监测。为推动基于计算机视觉的智能溺水预警技术研究,本研究构建了一个面向泳池场景的溺水行为检测数据集,旨在为目标检测模型提供可靠的训练与评估基准。
数据集简介
本研究构建了一个包含 8,642 张图像、12,622 个标注实例的泳池溺水检测数据集,涵盖游泳、踩水和溺水三类行为,为基于深度学习的溺水预警系统提供训练与评估基准。
数据集概述
泳池溺水事故具有突发性强、识别窗口短的特点,传统人工监控方式难以实现全时段、全覆盖的有效监测。为推动基于计算机视觉的智能溺水预警技术研究,本研究构建了一个面向泳池场景的溺水行为检测数据集,旨在为目标检测模型提供可靠的训练与评估基准。
该数据集共包含 8,642 张图像及 12,622 个标注实例,采用 YOLO 格式进行边界框标注,定义了三类目标行为:游泳(swimming,7,260 个实例)、踩水(tread_water,3,305 个实例)和溺水(drowning,2,057 个实例)。三类行为在水中的姿态表现具有渐进性差异,能够有效反映从正常活动到危险状态的行为演变过程。
数据集按照约 7:2:1 的比例划分为训练集(6,049 张)、验证集(1,728 张)和测试集(865 张),各子集间类别分布保持一致,确保模型训练与评估的公平性和可靠性。该数据集可广泛应用于泳池溺水检测、水域安全监控等相 关领域的深度学习模型研究与性能评估。
数据集来源
本研究所使用的数据集为自主构建,图像数据来源于真实泳池监控场景的视频录像,经逐帧提取与筛选后获得 8,642 张有效图像。所有图像均由人工进行标注,采用 YOLO 格式的边界框标注方式,定义了游泳(swimming)、踩水(tread_water)和溺水(drowning)三类行为目标,共计标注 12,622 个实例。标注过程中严格遵循统一的标注规范,以确保标注质量的一致性与准确性。
类别定义

标注规范
标注采用 YOLO 格式:每个目标一行,字段为 class x_center y_center width height, 坐标均为相对归一化(0~1)。

图1 标注规范图
数据规模与划分
- 总图像数:8642;总标注框数:12622

图2 数据集在训练、验证和测试集上的分布
数据集按照约 70:20:10 的比例划分为训练集、验证集和测试集:

表1 数据集划分及用途说明
质量控制
标注采用双阶段质量控制流程:首先进行规范化标注与自检, 确保目标框贴合实例外接矩形且类别一致;随后进行抽样复核, 针对漏标、错标与框位置偏差进行纠正。对争议样本进行二次确认, 以提高跨标注者一致性与总体标注可靠性。
数据格式与使用
数据集采用标准 YOLO 格式组织,通过 data.yaml 配置文件即可快速集成到训练流程中。
目录结构

数据集采用标准 YOLO 格式组织,图像和标注文件分别存放在 images/ 和 labels/ 目录下,并按训练集、验证集、测试集划分。
使用方式
在训练脚本中指定 data.yaml 即可加载数据:

性能评测
基于 YOLO11 模型在本数据集上进行训练和评测,使用mAP@0.5与mAP@0.5:0.95等标准指标对模型检测效果进行评估。评测结果如下:
训练过程综合指标曲线图

图3 训练与验证指标随Epoch变化趋势图
精确率-召回率(PR)曲线图

图4 目标检测PR曲线(Precision-Recall)
F1分数-置信度阈值曲线图

图5 不同置信度阈值下的F1曲线
归一化混淆矩阵图(分类误判分析)

图6 归一化混淆矩阵(person / leaflet)
应用案例

图7 应用案例:基于深度学习的泳池溺水行为检测系统设计与实现
免责声明与引用
数据仅用于科研与教学用途。若用于商业场景,请自行核验数据许可。 如需引用,请在论文或报告中注明数据集名称与版本号。
作者信息
作者:Bob (张家梁)
项目编号:Datasets-5
数据大小:1.96G
原创声明:本项目为原创作品

开源协议
本项目采用AGPL-3.0开源协议,允许个人和组织自由使用、修改和分发代码,但基于本项目的衍生作品必须同样开源,且用于提供网络服务时需向用户提供完整源代码。本项目仅供学习研究使用,作者不对使用本项目产生的任何后果承担责任,使用者应遵守当地法律法规,合理合法使用本项目。如本项目对您的研究或工作有所帮助,欢迎引用并注明出处。


评论(0)