• 正文概述
  • 编号:C110
    大小:1M
    环境:Python3.8、Pycharm2020
    简介: 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。
    源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.

    鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。
    标准PSO算法的流程:
    1)初始化一群微粒(群体规模为N),包括随机位置和速度;
    2)评价每个微粒的适应度;
    3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;
    4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;
    5)根据公式(2)、(3)调整微粒速度和位置;
    6)未达到结束条件则转第2)步。

    PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域

    运行展示

    配套文件

    我们提供完整项目文件清单如下:
    文件目录
    ├ 1.项目源码
    ├ 2.运行截图
    └ 3.演示视频

    1. 本站所有资源来源于原创和复现,如有侵权请邮件联系站长!
    2. 分享目的仅供大家学习和交流,请不要用于商业用途!
    3. 如果你也有好源码或者文档,可以与我们交换,分享有积分奖励和额外收入!
    4. 本站提供的源码、文档等等其他资源,都不包含技术服务请大家谅解!
    5. 如有链接无法下载、失效或广告,请联系管理员处理!
    6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
    7. 如遇到加密压缩包,默认解压密码为"www.2zcode.com",如遇到无法解压的请联系管理员!
    8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载
    声明网站内的所有源码都经过我们亲自测试,均可以正常使用.

    索炜达.猿创 » 基于Python粒子群优化算法

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或 联络我们.。
    你们有qq群吗怎么加入?
    因为每个人购买的系统代码不一样,我们提供都是一对一的优质在线QQ技术支持,目前暂时提供QQ交流群http://www.2zcode.com/zzxt。

    发表评论

    • 209916会员数(个)
    • 3036资源数(个)
    • 0本周更新(个)
    • 0 今日更新(个)
    • 1216稳定运行(天)

    提供最优质的资源集合

    加入VIP
    开通VIP 享更多特权,建议使用 QQ 登录