编号:A60
大小:80M
环境:Python3.8、OpenCV4.5、dlib、Pycharm2020
简介:疲劳检测原理
因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,
每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴
会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以
及嘴巴张合程度来判断一个人是否疲劳。
检测工具
dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。
代码思路
第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
第二步:使用dlib.shape_predictor获得脸部特征位置检测器
第三步:分别获取左右眼面部标志的索引
第四步:打开cv2 本地摄像头
第五步:从视频流进行循环,读取图片,并对图片做维度扩大,并进灰度化
第六步:使用detector(gray, 0) 进行脸部位置检测
第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
第八步:将脸部特征信息转换为数组array的格式
第九步:提取左眼和右眼坐标
第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
第十二步:进行画图操作,用矩形框标注人脸
第十三步:分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
第十四步:进行画图操作,68个特征点标识
第十五步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
第十六步:统计总眨眼次数大于50次屏幕显示睡着。
np.linalg.norm: 0.284s
dist.euclidean: 0.596s
所以看出np.linalg.norm()函数的运算速度要比dist.euclidean()快一点。所以用前者
来测量眼睛和嘴巴的欧氏距离。
运行展示
配套文件
我们提供完整项目文件清单如下:
文件目录
├ 1.项目源码
├ 2.运行截图
└ 3.演示视频
2. 分享目的仅供大家学习和交流,请不要用于商业用途!
3. 如果你也有好源码或者文档,可以与我们交换,分享有积分奖励和额外收入!
4. 本站提供的源码、文档等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
7. 如遇到加密压缩包,默认解压密码为"www.2zcode.com",如遇到无法解压的请联系管理员!
8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载
声明:网站内的所有源码都经过我们亲自测试,均可以正常使用.
索炜达.猿创 » 基于Python+OpenCV+dlib汽车驾驶员疲劳检测
常见问题FAQ
- 免费下载或者VIP会员专享资源能否直接商用?
- 本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
- 提示下载完但解压或打开不了?
- 你们有qq群吗怎么加入?