• 正文概述
  • 编号:A666
    大小:202M
    环境:Python3.9、OpenCV4.8.1、torch2.1.1
    简介:钢材表面缺陷的检测对于保障产品质量、延长使用寿命以及防止潜在的安全风险至关重要。本文基于YOLOv8深度学习框架,通过1800张图片,训练了一个进行钢材表面缺陷检测的目标检测模型,用于检测热轧钢带的六种典型表面缺陷:即轧制氧化皮,斑块,开裂,点蚀表面,内含物和划痕。并基于此模型开发了一款带UI界面的钢材表面缺陷检测系统,可用于实时检测钢材表面的6种缺陷,更方便进行功能的展示。该系统是基于python与PyQT5开发的,支持图片、视频以及摄像头进行目标检测,并保存检测结果。的意外事件,尤其对于老年人、儿童、孕妇以及患有某些疾病的人群来说,跌倒可能会导致严重的身体损伤甚至危及生命。因此,及时准确地检测跌倒事件,对于保护人们的生命安全,提供紧急救助,减少伤害程度至关重要。因此,跌倒检测在各个领域都有广泛的应用前景,对于提高人们的生活质量和安全保障具有重要意义。
    文件说明:

    运行展示

    run MainProgram.py
    主界面

    图片检测

    视频检测

    实时检测

    运行train.py可以进行训练
    将文件【datasets/SteelData/data.yaml】中train,val数据集的绝对路径改为自己项目数据集的绝对路径
    train: E:\MyCVProgram\SteelDetection\datasets\SteelData\train
    val: E:\MyCVProgram\SteelDetection\datasets\SteelData\val
    然后运行train.py文件即可开始进行模型训练,训练结果会默认保存在runs/detect目录中。
    其中runs/train是我已经训练好的结果文件,含模型与所有过程内容。
    训练好的模型在runs/train/weights目录下,last.pt表示最后一轮结果的训练模型,best.pt表示训练中最好结果的训练模型。一般我们使用best.pt就行。

    配套文件

    我们提供完整项目文件清单如下:
    文件目录
    ├ 1.项目源码
    ├ 2.运行截图
    └ 3.演示视频

    1. 本站所有资源来源于原创和复现,如有侵权请邮件联系站长!
    2. 分享目的仅供大家学习和交流,请不要用于商业用途!
    3. 如果你也有好源码或者文档,可以与我们交换,分享有积分奖励和额外收入!
    4. 本站提供的源码、文档等等其他资源,都不包含技术服务请大家谅解!
    5. 如有链接无法下载、失效或广告,请联系管理员处理!
    6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
    7. 如遇到加密压缩包,默认解压密码为"www.2zcode.com",如遇到无法解压的请联系管理员!
    8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载
    声明网站内的所有源码都经过我们亲自测试,均可以正常使用.

    索炜达.猿创 » 深度学习之基于YoloV8的钢材表面缺陷检测系统(PyQt5界面+数据集+训练代码)

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或 联络我们.。
    你们有qq群吗怎么加入?
    因为每个人购买的系统代码不一样,我们提供都是一对一的优质在线QQ技术支持,目前暂时提供QQ交流群http://www.2zcode.com/zzxt。

    发表评论

    • 209915会员数(个)
    • 3036资源数(个)
    • 0本周更新(个)
    • 0 今日更新(个)
    • 1215稳定运行(天)

    提供最优质的资源集合

    加入VIP
    开通VIP 享更多特权,建议使用 QQ 登录